Surname

Centre Number

Other Names

wjec cbac

GCSE

3400U10-1

BIOLOGY – Unit 1: Cells, Organ Systems and Ecosystems

FOUNDATION TIER

FRIDAY, 7 JUNE 2019 – AFTERNOON

1 hour 45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	11			
2.	7			
3.	9			
4.	11			
5.	8			
6.	14			
7.	11			
8.	9			
Total	80			

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

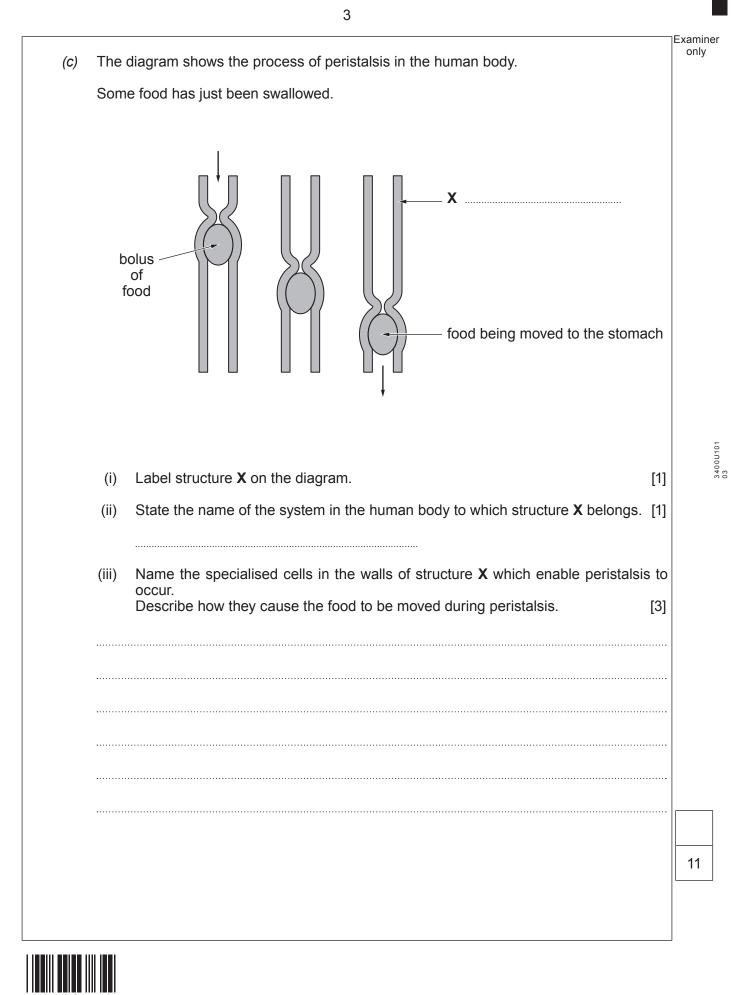
Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

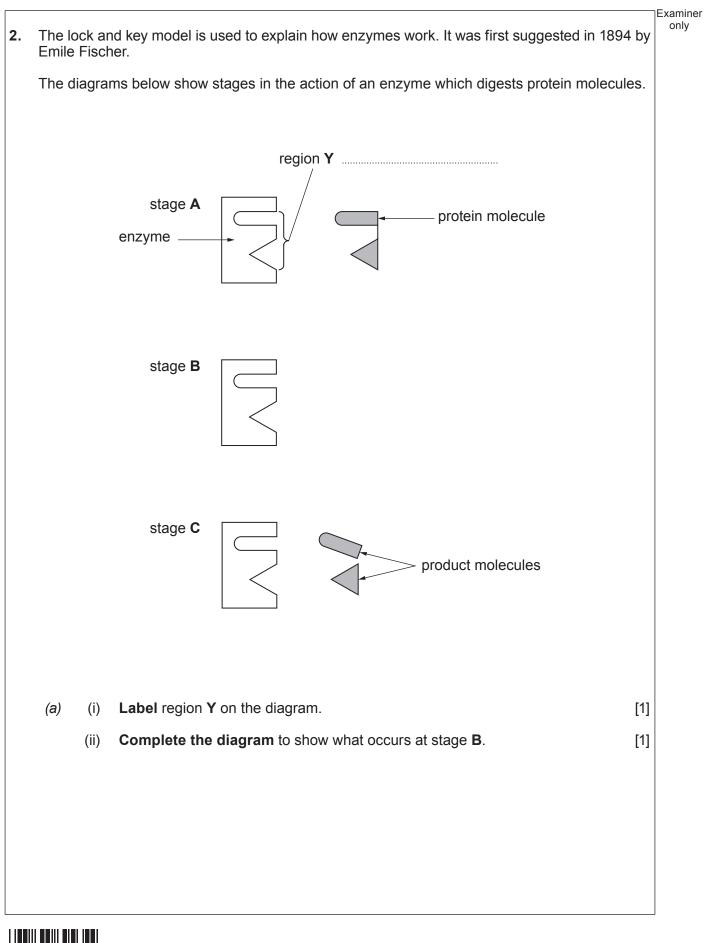
Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

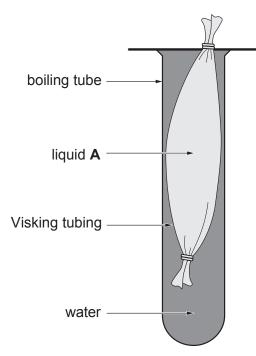
INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.


Question 5(b) is a quality of extended response (QER) question where your writing skills will be assessed.

		Answer all questions.
1.	(a)	Complete the sentences below which describe how the bodies of animals and plants are built up and organised. [3]
		Use words from the list below.
		membranes organisms cells proteins organs
		Similar are grouped together to form tissues.
		Different types of tissues make up which are organised into systems.
		The systems work together in such as animals and plants.
	(b)	Animals and plants have specialised cells.
		(i) Identify the scientific term for the process which occurs in organisms resulting in cells becoming specialised. Choose your answer from the list. [1]
		A division
		B diffusion
		C differentiation
		D diversification
		Answer
		(ii) Explain how and why specialised cells are beneficial to organisms. [2]

(i)	State the name of the type of enzyme shown in stage A .	[1]	Examine only
(ii)	State the name of the product molecules shown in stage C .	[1]	
The	diagram below shows the same enzyme but it has been denatured.		
(i)	Explain why this denatured enzyme would not function.	[2]	
(ii)	Suggest how the enzyme molecule shown could have become denatured.	[1]	
			7
	The (i)	The diagram below shows the same enzyme but it has been denatured.	The diagram below shows the same enzyme but it has been denatured.



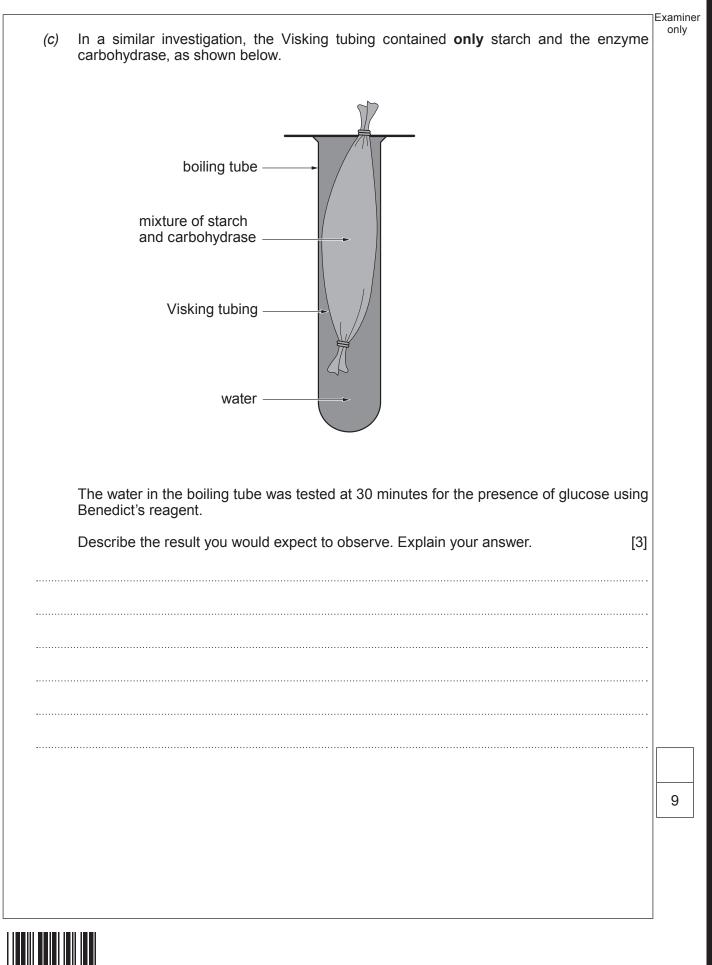
The cell membrane controls which substances enter and leave the cell. Visking tubing can be used as a model of the cell membrane.

The diagram shows the apparatus used at the start of an investigation using Visking tubing.

The contents of liquid **A** were tested for glucose and starch at the start of the investigation.

Liquid **A** and the water in the boiling tube were tested for glucose and starch at 30 minutes.

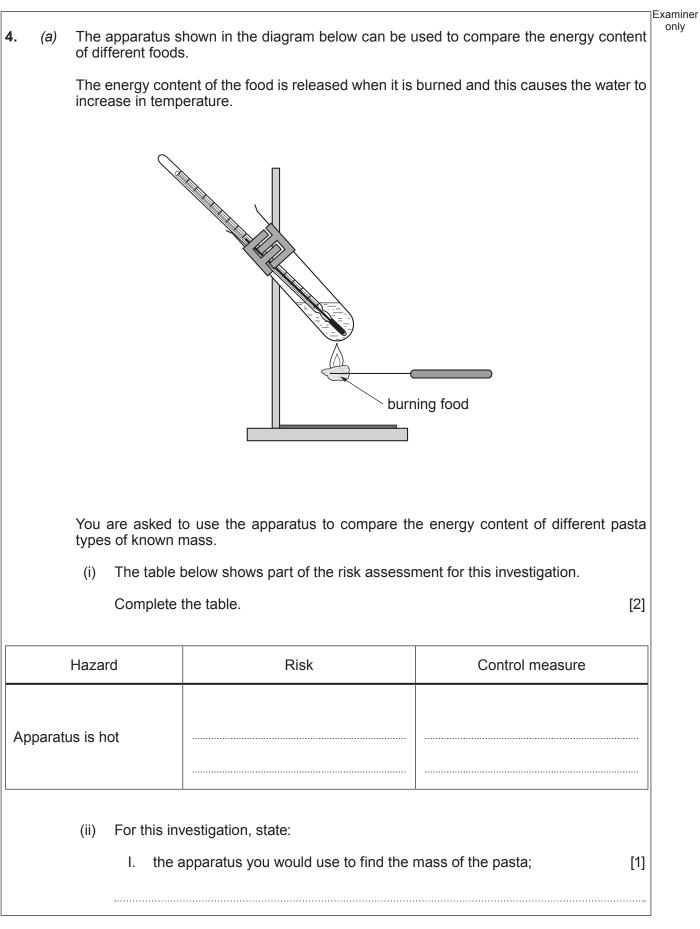
(a) (i) Complete the table below to show the results of tests made on liquid **A** at the **start of the investigation**. [2]


Test	Colour change	Conclusion
Benedict's reagent to test for glucose	blue to	glucose present
lodine solution to test for starch	brown to	starch present

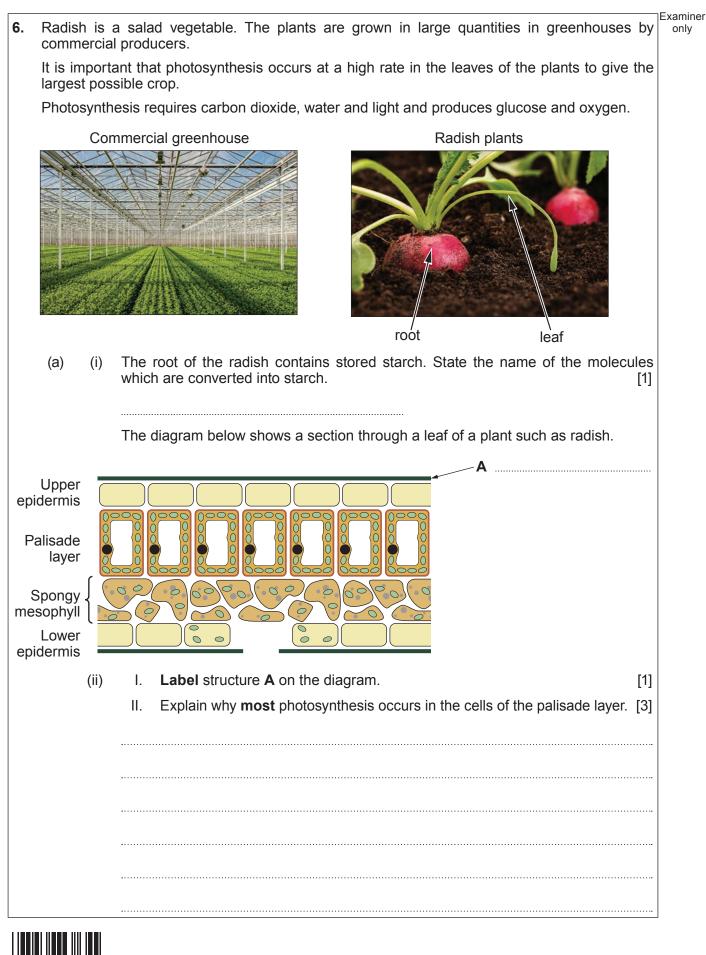
(ii) Describe how you would test the water in the boiling tube for the presence of glucose using Benedict's reagent.

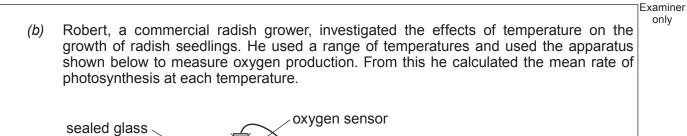
(You do not need to describe the result)

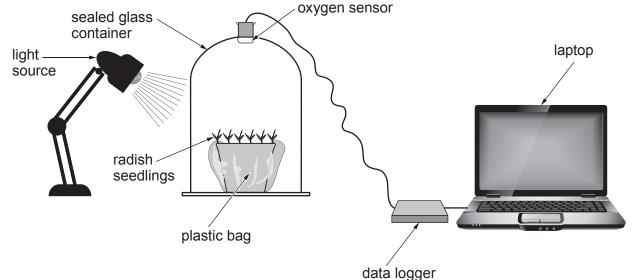
Test for glucose Test for starch liquid A glucose present starch present water in boiling tube glucose present no starch present Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube but starch molecules are not. [3]	Iiquid A glucose present starch present water in boiling tube glucose present no starch present Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube		esults at 30 minutes			
Iiquid A glucose present starch present water in boiling tube glucose present no starch present Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube	Iiquid A glucose present starch present water in boiling tube glucose present no starch present Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube			Test for alucose	Test for starch	
Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube	Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube		liquid A			
Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube but starch molecules are not. [3]	Explain why, at 30 minutes, glucose molecules are present in the water in the boiling tube but starch molecules are not. [3]		water in boiling tube	glucose present	no starch present	
		b.	ut starch molecules are n	ot.		[3]



9

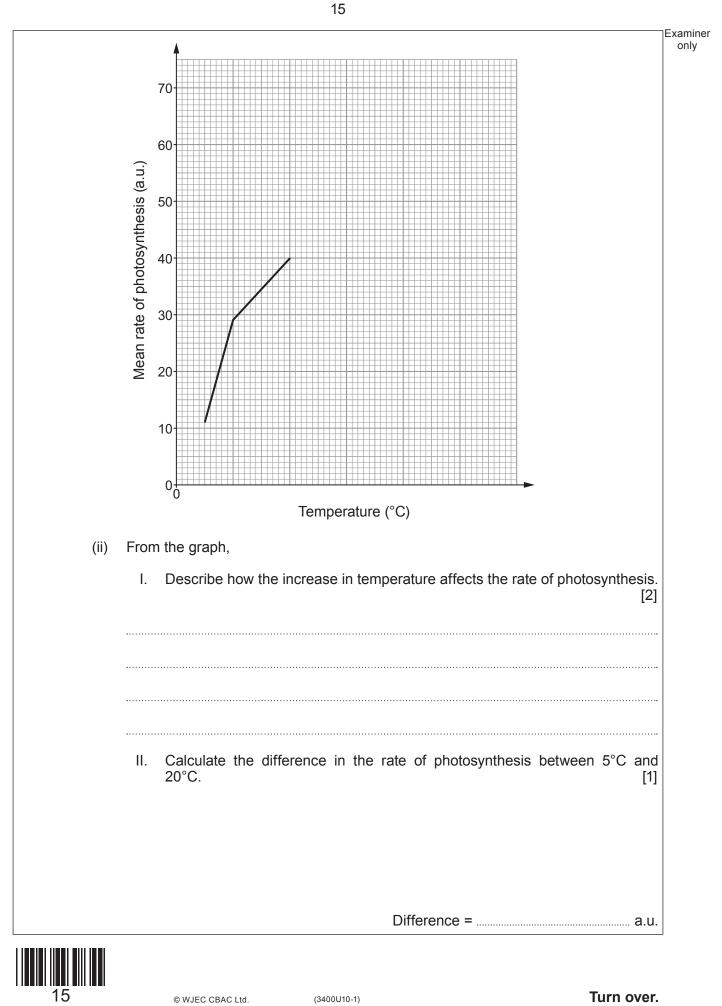

aminer only


3400U101 11


		vo factors which you w nsure fair testing;	vould keep constant throug	hout the investigation to [2]
	III. ho	ow you would work out	the increase in the tempera	ature of the water. [2]
(iii)	Explain	why it is important to be	urn each piece of pasta cor	mpletely. [1]
<i>(b)</i> The Pasta ty		ws some results from a Total mass of pasta burned (g)	an investigation. Total energy released from pasta (J)	Energy released in Joules per gram (J/g)
plain		9	293.4	32.6
wholewh	eat	10	282.0	28.2
green		9	252.0	
(i)	answer	te the energy released in the table. for working.	d in Joules per gram for g	reen pasta. Write you [2]
(ii)		son for your answer.	n type of pasta has the high	est energy content. Give [1]
()	- -			
(,	•	pasta		

				12			
5.	(a)	Complete	e the word equation	for aerobic respirati	on in a human.		aminer only
Glu	icose	+		→ Carbon dioxi	de +	+ Energy	
	(b)	The table breathed of	shows the gases out).	present in inspired	air (air breathed in)) and expired air (air	
		T	Gas	Inspired air (%)	Expired air (%)		
		I	oxygen	21.00	16.00		
		I	carbon dioxide	0.04	4.00		
		I	nitrogen	78.00	78.00		
		I	water vapour	varies	saturated		
	·····						
	······					S	8

The results of his investigation are shown on the graph and in the table.


Temperature (°C)	Rate of photosynthesis (a.u.)
5	
10	Values shown on the graph
20	graph
25	51
30	60
35	64
40	59
45	24
55	15

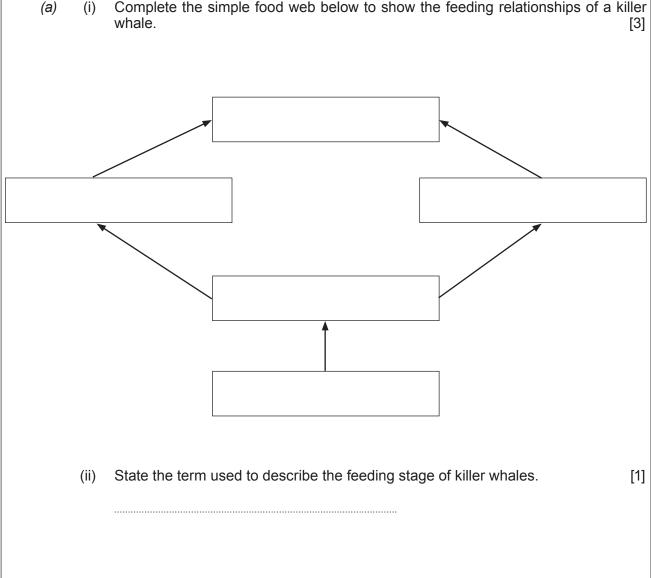
- Complete the graph of results by: (i)
 - Ι. adding the scale for temperature;
 - Ш. plotting the values from 25°C - 55°C;
 - III. joining the plots with a ruler to complete the line

[4]

only

(iii)		amine only
	 II. How could Robert improve his investigation so that the optimum temperature could be identified more accurately? [1] 	
		14

17



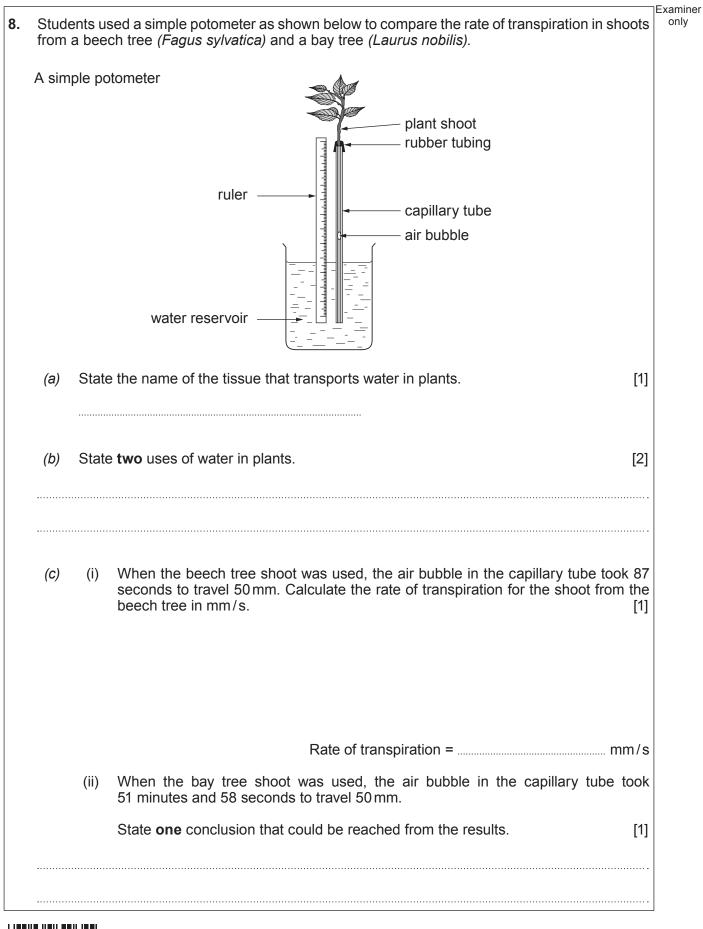
7. Killer whales (Orcinus orca) feed on thousands of large fish and squid. These large fish and squid feed on hundreds of small fish. Small fish feed on tiny organisms called plankton.

In 2016, a dead killer whale was found washed up on an island off the West Coast of Scotland. Tests revealed the whale contained one of the highest levels of PCBs (polychlorinated biphenyls) ever recorded. Levels of PCBs are measured in milligrams per kilogram of fat in an animal's body. Scientists believe that the threshold where PCBs can cause harm to killer whales is 30 mg/kg of fat. The level of PCB in the dead whale was 957 mg/kg of fat.

During the last century, PCBs were widely used in plastics, electrical goods and cement. PCBs were banned in the 1970s. It is estimated that there are a million tonnes of PCB-contaminated material waiting to be disposed of in Europe. PCBs are released into the environment from decomposing products that have not been disposed of properly. Plankton absorb PCBs that are washed into the oceans.

There are only eight resident killer whales remaining in UK waters. Scientists have not observed any offspring being born to the resident killer whales in the 25 years they have been studying them.

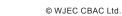
Complete the simple food web below to show the feeding relationships of a killer (i)



Examiner only

© WJEC CBAC Ltd.

(b)	Calculate how many times greater the level of PCBs was in the dead killer whale's boo when compared to the threshold where PCBs cause harm. [
	Times greater =
(c)	Suggest the name of a group of micro-organisms responsible for releasing PCBs into the environment.
(d)	Explain how the PCBs led to the death of the killer whale. [2
(e)	Apart from causing death, describe another effect of PCBs on killer whales in UK water Give evidence to support your answer.
	Suggest why PCBs are still present in UK waters even though they have been banne



© WJEC CBAC Ltd.

(3400U10-1)

Examiner only (d) State **one** factor that should have been kept constant in this investigation. (i) [1] (ii) Describe how the students could improve their confidence in the results. [1] Explain why a potometer cannot be used to study transport of sugars in a plant. [2] (e) 9 **END OF PAPER**

21

22

23

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1

© WJEC CBAC Ltd.